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Layout
 Classical mechanics:   

A. Equations of motion & conservation laws 

B. Least action principle 

 Quantum mechanics: 

A. Particle wave duality 

B. Wave equation & path integral 

 Quantum many-body systems: 

A. Indistinguishable particles — Second quantization & many-body Green functions  

B. Green functions approach — fundamental Schwinger functional equation0 

C. Generating functional approach — renormalized perturbation theory via Feynman diagrams

2



Václav Janiš3

Classical mechanics

Nature’s laws are independent of spatial and temporal scaling
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Newton’s law of particle dynamics

 Extreme downsizing of observables to elementary objects  

— mass point (volume differential — particle) described by a single coordinate vector 


 Extreme downscaling of time differences — time differential  (microscopic evolution)


 Acting force  determines the dynamics of the mass point


   


 Initial conditions at :  


 Many mass points — superposition principle


⃗x

dt
⃗F

t = 0 ⃗x, · ⃗x

N

∑
i=1

mi
d2 ⃗xi

dt2
= ⃗F ( ⃗x1, … ⃗xN)
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m
d2 ⃗x
dt2

= ⃗F ( ⃗x )

Dynamics of elementary measurable objects
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Hamilton & Hamilton-Jacobi equations

 Conserving systems:  

 Energy is conserved during dynamics:    

 Momentum:   &  Hamiltonian:   

 Hamilton equations: First-order differential equations 

 ,   

 Conserving quantities:  (time independent) to replace momentum variables,  

 Hamilton-Jacobi equations for : 

 

⃗F ( ⃗x ) = − ∇V( ⃗x )
d
dt

E( ⃗x(t)) =
d
dt [ m

2
· ⃗x(t)2 + V ( ⃗x(t))] = 0

⃗p = m · ⃗x H( ⃗p, ⃗x ) =
1

2m
⃗p2 + V( ⃗x )

·xl(t) =
∂H
∂pl

·pl(t) = −
∂H
∂xl

αk pl =
∂S(qk, αk)

∂ql

S(qk, αk; t)

H ( ∂S
∂qk

, qk; t) +
∂S
∂t

= 0
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Least action (Hamilton) principle — generating functional
 Functional of action on the space of trajectories parametrized by time:  

 

where  is the Lagrangian 

 Hamilton (least action) principle                      

 

 Two ways to determine the dynamics of complicated system with many variables 

★ Solving the set of Hamilton local differential equations for  and  

★ Minimizing the global functional of action  in the space of admissible trajectories  

𝒜 = ∫ dt [∑
k

pk(t) ·qk(t) − H(pk(t), qk(t))] = ∫ dtℒ(qk(t), ·qk(t))

ℒ(qk, ·qk)

δ𝒜 = ∫ dt∑
k [( ·qk −

∂H
∂pk ) δpk − ( ·pk +

∂H
∂qk ) δqk] = 0

qk(t) pk(t)

𝒜(pk, qk)
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The two approaches may differ in approximate solutions
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Quantum mechanics

 Spatial scaling breaks down at microscopic lengths — discretization
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Uncertainty principle - particle-wave dualism 
 To solve the Hamilton equations — precise values for coordinates and velocities (momenta) needed 

 Heisenberg uncertainty principle:      

 Localized elementary object (particle)  

 Delocalized elementary object (wave)  

 Particle description — using measurable quantities 

 Wave description — allows for a deterministic evolution 

Δq × Δp ≥
ℏ
2

Δq = 0

Δp = 0
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Localized objects do not have deterministic evolution

Delocalized waves do not have direct interpretation
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Schrödinger equation and Feynman path integral

 Wave function  obeys local Schrödinger differential equation 

 

 Coordinates and momenta represented by operators:  canonical commutation relations 

 

 Action & amplitude for particle trajectories:   ; each trajectory equally probable 

 Quantum interference — amplitude for a transition of a particle between two measurements 

, ,  

 Probability of particle transitions:   

 Classical trajectory (most probable) in  leading to  (Hamilton-Jacobi)

ψ ( ⃗x, t)

iℏ
∂
∂t

ψ ( ⃗x, t) = − [ ℏ2

2m
∇2 − V( ⃗x )] ψ ( ⃗x, t)

[ ̂x, ̂p] = iℏ ⇒ ̂p = − iℏ
d

dx
K(q, ·q, t) = e

i
ℏ ∫t dtℒ(q(t), ·q(t))

K(x0, t0; xN, tN) = ∫
∞

−∞
dx1…∫

∞

−∞
dxN−1 exp { i

ℏ

N

∑
i=1

ℒ (xi,
xi − xi−1

Δt ) Δt} Δt =
tN − t0

N
N → ∞

P(x0, t0; xN, tN) = |K(x0, t0; xN, tN) |2

ℏ → 0 δ𝒜 = 0
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Many interacting quantum particles


 Indistinguishability of identical particles
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Second quantization 
 Quantum particles are independent ( ) objects but indistinguishable: 

 

 Completeness of the energy spectrum of 1P Hamiltonian:   

 Ordering of energy eigenenergies bounded from below:  

 Occupation number representation: occupied by  particles: ,  

 Second quantization: transformation  ,  — Fock vacuum (cyclic vector with ) 

 Wave vectors to operators:  and  

 Canonical commutation relations:   

ℋ2 = ℋ1 ⊗ ℋ1

|ψ1, ψ2 > =
1

2
[ |ψ1 > |ψ2 > ± |ψ2 > |ψ1 > ]

1̂ = ∑
l

|ϕl > < ϕl |

0 = E0 < E1 < E2 < …

|ϕi > ni |N; n1, …, nl, … > N = ∑
i

ni

ℋ1 → ℋFock =
∞

∑
n=0

⊕ S±ℋn
1 ℋ0 E0

|ψ > = ∑
l

cl |Φl > → ∑
l

cl ̂a†
l < ψ | = ∑

l

c*l < Φl | → ∑
l

c*l ̂al

[ ̂al, ̂a†
k]±

= ̂al ̂a†
k

± ̂a†
k ̂al = δl,k1̂

11



Václav Janiš

Many-body Hamiltonian & operator Schödinger equation 

 Interacting fermions 

 

The operator of particle density    and interaction strength   

 Thermodynamic (grand) potential   

 Grand potential can be understood as an evolution functional in imaginary time  

 Schrödinger equation for wave operator:           

 Eigenvectors are known only for  , but not for the full Hamiltonian  

 Interaction-induced quantum fluctuations due to non-commutativity  

Ĥel−el = 𝒱∫
d3p

(2πℏ)3

⃗p2

2m
̂a†
⃗p
a ⃗p +

𝒱
2 ∫

d3q
(2πℏ)3

u( ⃗q) : ̂ρ( ⃗q)ρ(− ⃗q) :

̂ρ( ⃗q) = ∫
d3p

(2πℏ)3
̂a†
⃗p+ ⃗q

̂a ⃗p u( ⃗q) = ∫ d3re
i
ℏ ⃗q⋅ ⃗rU(r)

Ω(T, V, μ) = − kBT log [TrFock exp{−β(Ĥel−el − μN̂ )}]
β →

i
ℏ

t

−ℏ
∂
∂τ

ψ̂ (τ) = [Ĥ0 + ĤI] ψ̂ (τ)

Ĥ0 Ĥ0 + ĤI

[Ĥ0, ĤI] ≠ 0
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Many-body Green functions 

 Elementary objects of quantum many-body here are creation and annihilation operators  and  

 These operators are not hermitian, hence non-measurable 

 Imaginary-time evolution (Heisenberg):   ,  

 Quantum amplitudes for transitions between two “asymptotic” states  

 Thermal average of time-ordered product — 1P Green function 

 

with partition sum  

 2P Green function:   

̂a†
λ ̂aλ

̂aλ(τ) = eτĤ ̂aλe−τĤ τ ∈ (0,β)

λ, λ′ 

𝒢(λ, λ′ ; τ − τ′ ) = −
1
𝒵

Tr {Tτ [ ̂aλ(τ) ̂a†
λ′ (τ′ )] e−β(Ĥ0 + ĤI − μN̂)}

𝒵 = Tr [e−β(Ĥ0 + ĤI − μN̂)]
𝒢(λ1, τ1λ2, τ2, λ3, τ3, λ4, τ4) =

1
𝒵

Tr {Tτ [ ̂aλ1
(τ1) ̂aλ3

(τ3) ̂a†
λ4

(τ4) ̂a†
λ2

(τ2)] e−β(Ĥ0 + ĤI − μN̂)}

13



Václav Janiš14

Schwinger approach — equation based
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Equations for Green functions

 Schwinger equation matches 1P & 2P Green functions 

 

 Dyson equation —  1P self-energy  replaces 2P GF in Schwinger equation 

 

 2P Dyson equation — 2P vertex 

 

 Schwinger-Dyson equation 

 

G(1,1̄) = G(0)(1,1̄) + ∫ d2̄d2G(0)(1,2̄)U(2̄ − 2)G(2)(1̄2̄,22)

Σ

G(1,1̄) = G(0)(1 − 1̄) + ∫ d3d3̄G(0)(1 − 3̄)Σ(3̄,3)G(3,1̄)

G(2)(11̄,33̄) = G(1,1̄)G(3,3̄) + ∫ d1′ d1̄′ d3′ d3̄′ G(1,1̄′ )G(1′ ̄1)Γ(1′ ̄1′ ,3′ ̄3′ )G(3,3̄′ )G(3′ ̄3)

Σ(1̄ − 1) = ∫ d2U(1 − 2)G(2,2+)δ(1 − 1̄) − U(1 − 1̄)G(1̄ − 1)

−∫ d2d4̄d4d3U(1 − 2)G(4 − 1)G(2 − 4̄)G(3 − 2)Γ(4,4̄,3,1̄)
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Ward identity & Schwinger field theory

 Bethe-Salpeter equations — 2P irreducible vertex   (2P self-energy)  

 

where  are particle degrees of freedom when annihilated and  when created 

 Generalized Ward identity connecting 1P & 2P irreducible vertices (conserving theory) 

                       

 Putting all exact equations together —> Schwinger field theory 

  

 A solution only perturbative via  expansion in interaction 

Λ

Γ(1,2̄,2,1̄) = Λ(1,2̄,2,1̄) + ∫ d3̄d3d4̄d4Λ(1,2̄,3,3̄)G(3 − 4̄)G(4 − 3̄)Γ(4,4̄,2,1̄)

1 = ( ⃗p, τ, σ) 1̄

Λ(1̄,2,3̄,3) =
δΣ(3̄,3)
δG(2,1̄)

Σ = UG − UGG ⋆ [1 +
δΣ
δG

GG ⋆ ]
−1 δΣ

δG

U
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Closed formulation — no perturbative (diagrammatic) input & Wick’s contractions 



Václav Janiš17

Feynman approach — functional based



Václav Janiš

Dirac picture - full perturbative solution

 Eigenstates and eigenenergies of  are known 

 Evolution of operators (Dirac) interactive picture:    


Thermodynamic S-matrix:    , only perturbative definition 

 Thermal averaging    

 1P Green function (diagonal in momentum representation) 

 

 Unperturbed Green function ( ) 

Ĥ0

̂A(τ) = eτĤ0 ̂Ae−τĤ0

̂Sμ(β,0) = Tτexp {−∫
β

0
dτĤI(τ)}

⟨X̂⟩ =
1

𝒵0
Tr [X̂e−β(Ĥ0)−μN̂ )]

𝒢( ⃗p, τ − τ′ ) = −
1

⟨ ̂Sμ(β,0)⟩ ⟨Tτ [ ̂a ⃗p(τ) ̂a†
⃗p
(τ′ ) ̂Sμ(β,0)]⟩

ĤI = 0

𝒢0( ⃗p, τ − τ′ ) = − ⟨Tτ [ ̂a ⃗p(τ) ̂a†
⃗p
(τ′ )]⟩
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Perturbation expansion — Feynman diagrams

 Solution is perturbative due to time-ordering product defined only on polynomials 

 Thermodynamic S-matrix 

 

 Expressions  are explicitly known and  

 Perturbation expansion is a sum of products of Wick’s contractions  (bare Green functions) 

 Feynman diagrams — graphical representation of unlabelled Wick’s contractions

̂Sμ(β,0) = 1 +
∞

∑
n=1

(−1)n ∫
β

0
dt1 ∫

t1

0
dt2…∫

tn−1

0
dtn ⟨ĤI(t1)ĤI(t2)…ĤI(tn)⟩

⟨ ̂a†
i1
… ̂a†

in
̂ain… ̂ai+⟩ [ ̂a†

α, [ ̂aβ, Ĥ0]] = cαβ1̂

⟨Tτ [ ̂a ⃗p(τ) ̂a†
⃗p
(τ′ )]⟩
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1̄ 1 1 1̄
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Thermodynamic potential — Luttinger-Ward functional

 Solution of Schwinger theory:   ; How to get the thermodynamic potential? 

 Luttinger-Ward functional  such that   

 Generating thermodynamic functional (analogue to Hamilton classical action  and ) 

 

 Equilibrium state from              

 Feynman field theory — Feynman diagrams determine the thermodynamic potential (Hamilton-Jacobi-like)  

Σ[U, G]

Φ Σ[U, G] =
δΦ[U, G]

δG
q → G p → Σ

1
N

Ω̄[G, Σ] = −
1

βN ∑
σ,ωn,k

eiωn0+ {ln [iωn + μσ − ϵ(k) − Σσ(k, iωn)] + Gσ(k, iωn)Σσ(k, iωn)} + Φ[G, U ]

δΩ̄ =
δΩ̄
δΣ

δΣ +
δΩ̄
δG

δG = [(G(0)−1 − Σ)−1 − G] δΣ − [Σ −
δΦ
δG ] δG = 0

Ω [G(0)−1, U] = − kBT ln [𝒵0 ⟨ ̂Sμ(β,0)⟩] = NΦ[G, U ] − Tr [ln (G(0)−1 −
δΦ
δG ) + G

δΦ
δG ]
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Input to the Feynman approach is a renormalized perturbation theory  



 -derivable approximations — analytic form of  for given  (not always possible) 

 Thermodynamic potential does not contain 2P functions — conserving form not guaranteed  

 Schwinger-Dyson equation representing the self-energy  via 2PI vertex  

 

 Conserving approximations   results in Schwinger theory (unreachable) 

 Conserving response function   

 Inconsistency in determining critical behavior (diverging response function) 

Φ Φ[G, U ] Σ[G, U ]

Σ[G, U ] Λ[G, U ]

Σ[G, U ] = UG [1 − G (1 + Λ[G, U ]GG ⋆ )−1 Λ[G, U ]]
Λ[G, U ] =

δΣ
δG

χ =
dG
dh

= [1 +
δΣ[G, U ]

δG
GG ⋆ ]

−1

GG

1 + Λ[G, U ]GG ≠ 1 +
δΣ[G, U ]

δG
GG
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Response functions & conserving approximations
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Conclusions — Thermodynamics of correlated electrons

 Perturbation theory needed — Feynman diagrams representing virtual physical processes 

 Non-perturbative approximations — infinite series of diagrams 

 Approximation generators — Schwinger-Dyson equation determining the self-energy from  2PIR vertex 

 Conserving approximations — only fully renormalized Green functions in Feynman diagrams 

 Luttinger-Ward functional (thermodynamic potential) connects thermal & mechanical parts 

 Conserving 2P vertex —  via Ward identity from self-energy 

 Thermodynamic consistency — only a single divergent 2P vertex; the task to solve

22

 Matching the vertex from Schwinger-Dyson equation  
with the conserving one from Ward identity 


