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Classical mechanics
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Newtons law of particle dynamics

= Extreme downsizing of observables to elementary objects

— mass point (volume differential — particle) described by a single coordinate vector X
= Extreme downscaling of time differences — time differential dt (microscopic evolution)

= Acting force F determines the dynamics of the mass point

= Initial conditions at = 0: XX

= Many mass points — superposition principle
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Hamilton & Hamilton-Jacobi equations

= Conserving systems: F()?) — — V)

- ol |70 o -
= Energy is conserved during dynamics: EE(x(t)) = = Ex(z‘)2 +V (x(t))] =0

- > - - 1 — —
» Momentum: p = mx & Hamiltonian: H(p, x) = 2—p2 + V(x)
m

® Hamilton equations: First-order differential equations

(1) oH 0 oH
bYs R, = - —
! Gpl b dxl
. » e . 95(q1> %)
= Conserving quantities: a; (fime independent) to replace momentum variables, p;, = p
q

= Hamilton-Jacobi equations for S(q, a;; 1):

gl 2 )+ 2
oq. ar
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Least action (Hamilton) principle — generating functional

= Functional of action on the space of trajectories parametrized by time:
4 = Jdt [Zpk(t)q'k(t) — H(p(0), qk(t))] = Jdtg(qk(t), qi(1))
k

where Z£(q, q;) is the Lagrangian

= Hamilton (least action) principle

oA Jdt E ; i ) 7, + J o 0
= gy —— Py — | P T™— dr| =
. . opy : : oq :

= Two ways to determine the dynamics of complicated system with many variables
% Solving the set of Hamilton local differential equations for g, (¢) and p,(?)

% Minimizing the global functional of action &(p;, q,) in the space of admissible trajectories
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Quantum mechanics
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Uncertainty principle - particle-wave dualism

= To solve the Hamilton equations — precise values for coordinates and velocities (momenta) needed

h
» Heisenberg uncertainty principle: Ag X Ap > 5

= |ocalized elementary object (particle) Ag = 0

» Delocalized elementary object (wave) Ap =0

= Particle description — using measurable quantities

Localized objects do not have deterministic evolution

= Wave description — allows for a deterministic evolution

Delocalized waves do not have direct interpretation
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Schrodinger equation and Feynman path integral

= Wave function y/(X, t) obeys local Schrédinger differential equation

2

o a - h 2 - -
Ih—lin b)) = — || " — WE) | Wik, o)
ot 2m
®» Coordinates and momenta represented by operators: canonical commutation relations

d
[X,pl=ih=>p=—ih—
dx

» Action & amplitude for particle trajectories: K(q,q,t) = e ' diZ@0.40) -+ gqch trajectory equally probable

® Quantum interference — amplitude for a transition of a particle between two measurements

- = X, — X;_ ty— Iy
K(xg to X, i) = | dxj.. | dxy_ exp ZfZ At o Af == N = o

—Qo0
= Probability of particle transitions: P(xy, fy; Xy, ty) = | K(xg, fy Xy ty) |

» (Classical trajectory (most probable) in 2 — 0O leading to 6/ = 0 (Hamilton-Jacobi)
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Many interacting quantum particles
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Second quantization

= Quantum particles are independent (#, = #'| ® # ;) objects but indistinguishable:
1
V2

Completeness of the energy spectrum of 1P Hamiltonian: 1 = Z |, > < ¢
I

[y > =— [y > lys > £ [y > |y > |

= Ordering of energy eigenenergies bounded from below: 0 = £y < E; < E, < ...

Occupation number representation: | ¢; > occupied by n, particles: |N;n,...,n, ... > , N = Z n;
i

»

o0
o Second quantization: fransformation 7| = # . = Z D S. A", H o — Fock vacuum (cyclic vector with E)

n=0
- Wave vectors to operators: |y > = Z c|®, > - Z cld; and <y | = Z cf <P/ - Z cfa

l l l l
» Canonical commutation relations: [&l, &Z] = &l&]i + &Zdl = 51,,(1
+
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Many-body Hamiltonian & operator Schodinger equation

®» Tnteracting fermions

- Fo 7 [ dq
Hel‘elz%[ ilas + [ q) : p@p(—=7q) :
Oy S —dap+— 2ah) 7@ 2 lapl=a))

d3
i 2

The operator of particle density p(q) = [ Ai fb and interaction strength u(q) = Jd3re%5'7U(r)
» Thermodynamic (grand) potential (7, V,u) = — kgT log [TrFOCk exp{—p(H ! - ,u]Q)}]

l
» Grand potential can be understood as an evolution functional in imaginary time f — Et

0 A .
» Schrddinger equation for wave operator: —h— 3 —y(r) = [HO + H,] W (7)
T

= Eigenvectors are known only for H, , but not for the full Hamiltonian H, + H,

» Interaction-induced quantum fluctuations due to non-commutativity [ﬁo, I:II] #0
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Many-body Green functions

» Elementary objects of quantum many-body here are creation and annihilation operators d; and d,

= These operators are not hermitian, hence non-measurable

= Tmaginary-time evolution (Heisenberg): d,(7) = eﬂ;'ci/1e_”H , 7€ (0,5)

= Quantum amplitudes for transitions between two “asymptotic” states 4, A’

® Thermal average of time-ordered product — 1P Green function

1 ) IR e
G0Nt —7) =~ —Tr {T, @, @) e o+ ﬂN)}
with partition sum Z = Tr [e_ﬂ(HOJFHI_”N)]

. 1 . R . X B(Ay+ A, - uN
= 2P Green function: G(4;, 74y, Ty, A3, T3, Ay, T4) = ETr {TT [aﬂl(Tl)a/13(r3)az4(r4)azz(rz)] e ﬂ( oF Hy =4 ) }
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Schwinger approach — equation based
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Equations for Green functions

® Schwinger equation matches 1P & 2P Green functions
G(1,) =GO, + [did2G(0)(1,2)U(2 — 2)G»(12,22)
= Dyson equation — 1P self-energy 2 replaces 2P GF in Schwinger equation
E@RE—C @ T) + [d3d3G<0>(1 - 3)2(3,3)G(3.1)
= 2P Dyson equation — 2P vertex
G(z)(li,33) = G(1,1)G(3,3) + Jdl’di’d3’d3’G(1,T’)G(1’T)F(l’I’,3’3’)G(3,3’)G(3’3)
® Schwinger-Dyson equation

1-1)= JdZU(l -2)G22MH8(1 - 1) - U1l —1)G1 - 1)

— Id2d21d4d3 U1l-2GA-1)GR-4H)G3 -2)I(4,4,3,1)
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Ward identity & Schwinger field theory

» Bethe-Salpeter equations — 2P irreducible vertex A (2P self-energy)

(1,2,2,1) = A(1,2,2,1) + Jd3d3dzld4A(1,2,3,3)G(3 - 4G4 -3)I4,4,2,1)

where 1 = (p, 7, 6) are particle degrees of freedom when annihilated and 1 when created

® (Generalized Ward identity connecting 1P & 2P irreducible vertices (conserving theory)

e 52(3,3)
IS 2057 3) — =
0G(2,1)
® Putting all exact equations fogether —> Schwinger field theory
5% )
2=UG—-UGG % [l +—GG % —
oG oG

Closed formulation — no perturbative (diagrammatic) input & Wick's contractions

= A solution only perturbative via expansion in interaction U
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Feynman approach — functional based
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Dirac picture - full perturbative solution

= Eigenstates and eigenenergies of ﬁo are known

= Evolution of operators (Dirac) interactive picture: A@x) = eoAe=o

p
Thermodynamic S-matrix: Sﬂ(ﬁ,O) = T exp {—J dtH (7) } , only perturbative definition
0

A 1 - . -
= Thermal averaging (X) = ?Tr [Xe—ﬂ(Ho)—ﬂN)]
0

®» 1P Green function (diagonal in momentum representation)

G(Pr—7) =~ a;<r'>ﬁﬂ<ﬁ,0>]>

|
~ <TT [dﬁ(r)
($,060)
» Unperturbed Green function (ﬁ ;1 =0)
?0(57 T— T/) - = <TT [&ﬁ(f)&;(f/)] >

Institute of Physics / .y
(O\ F Z U of the Czech @B 18 Vaclav Janis
s Academy of Sciences



Perturbation expansion — Feynman diagrams

=™ Solution is perturbative due to time-ordering product defined only on polynomials
= Thermodynamic S-matrix

. 00 p h b1 . N .
Sﬂ(ﬁ,0)=1+2(—1)”J dtl[ dt2..." di, <H,(t1)H,(t2)...H,(tn)>
n=1 0

0 0

A
A

= EXxpressions <&j...&7ain...&i+> are explicitly known and [&2, [&ﬂ, ﬁ()” = Cypl

1 Iy
= Perturbation expansion is a sum of products of Wick's contractions <TT [&ﬁ(f)&;(f’)] > (bare Green functions)

® Feynman diagrams — graphical representation of unlabelled Wick's contractions
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Thermodynamic potential — Luttinger-Ward functional

= Solution of Schwinger theory: 2[U, G]; How to get the thermodynamic potential?

. . oDV, G]
» Luttinger-Ward functional @ such that 2[U, G| = C
= Generating thermodynamic functional (analogue o Hamilton classical action g — G and p — X)
I I .
—Q[G, 2] = - — Z e'@n0 {ln liw, + p, — e(k) — Z,(k, iw,)| + G, (K, iw,)Z (K, ia)n)} + ®[G, U]
N ’BNoa) k
. _ 0Q 5Q . 1 5P
= Equilibrium state from 60 =255+ --8G = (GO -x) " —G|oxT - [1- 2|56 =0
ox oG oG

= Feynman field theory — Feynman diagrams determine the thermodynamic potential (Hamilton-Jacobi-like)

Q[GV7L U] = —igT In [2" 0 <3’ﬂ(ﬁ,0)>] — NO[G, U] - Tr lln <G<0>—1 - g%) ¥ GZ%]

Input to the Feynman approach is a renormalized perturbation theory
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Response functions & conserving approximations

= d-derivable approximations — analytic form of ®[G, U] for given 2[G, U] (not always possible)
® Thermodynamic potential does not contain 2P functions — conserving form not guaranteed

= Schwinger-Dyson equation representing the self-energy 2[G, U] via 2PT vertex A[G, U]
X[G, U] = UG |1 - G (1+AIG,UIGG % )™ AIG, U]

= Conserving approximations A[G, U] = 3G results in Schwinger theory (unreachable)

-1
GG*] GG

: . dG 52[G, U]
= Conserving response function y = ’r =1+

= Tnconsistency in determining critical behavior (diverging response function)

02[G, U]
GG

1 +AlG,UIGG # 1+
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Conclusions — Thermodynamics of correlated electrons

= Perturbation theory needed — Feynman diagrams representing virtual physical processes

= Non-perturbative approximations — infinite series of diagrams

= Approximation generators — Schwinger-Dyson equation determining the self-energy from 2PIR vertex
= Conserving approximations — only fully renormalized Green functions in Feynman diagrams

= | uttinger-Ward functional (thermodynamic potential) connects thermal & mechanical parts

= Conserving 2P vertex — via Ward identity from self-energy

® Thermodynamic consistency — only a single divergent 2P vertex; the task to solve

Matching the vertex from Schwinger-Dyson equation
with the conserving one from Ward identity
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