Quantum dynamics of many interacting particles: Feynman and Schwinger approaches

Nobel prize winners 1965

for fundamental work in quantum electrodynamics, with deep -ploughing consequences for the physics of elementary particles
together with

Sin-Itiro Tomonaga

Richard Phillips Feynman

FZU

Layout

- Classical mechanics:
A. Equations of motion \& conservation laws
B. Least action principle
- Quantum mechanics:
A. Particle wave duality
B. Wave equation \& path integral
- Quantum many-body systems:
A. Indistinguishable particles - Second quantization \& many-body Green functions
B. Green functions approach - fundamental Schwinger functional equation0
C. Generating functional approach - renormalized perturbation theory via Feynman diagrams

Classical mechanics

Nature's laws are independent of spatial and temporal scaling

FZU

Newton's law of particle dynamics

Dynamics of elementary measurable objects

- Extreme downsizing of observables to elementary objects
- mass point (volume differential - particle) described by a single coordinate vector \vec{x}
- Extreme downscaling of time differences - time differential $d t$ (microscopic evolution)
- Acting force \vec{F} determines the dynamics of the mass point

$$
m \frac{d^{2} \vec{x}}{d t^{2}}=\vec{F}(\vec{x})
$$

- Initial conditions at $t=0: \vec{x}, \dot{\vec{x}}$
- Many mass points - superposition principle

$$
\sum_{i=1}^{N} m_{i} \frac{d^{2} \vec{x}_{i}}{d t^{2}}=\vec{F}\left(\vec{x}_{1}, \ldots \vec{x}_{N}\right)
$$

Hamilton \& Hamilton-Jacobi equations

- Conserving systems: $\vec{F}(\vec{x})=-\nabla V(\vec{x})$
- Energy is conserved during dynamics: $\frac{d}{d t} E(\vec{x}(t))=\frac{d}{d t}\left[\frac{m}{2} \dot{\vec{x}}(t)^{2}+V(\vec{x}(t))\right]=0$
- Momentum: $\vec{p}=m \dot{\vec{x}}$ \& Hamiltonian: $H(\vec{p}, \vec{x})=\frac{1}{2 m} \vec{p}^{2}+V(\vec{x})$
- Hamilton equations: First-order differential equations

$$
\dot{x}_{l}(t)=\frac{\partial H}{\partial p_{l}}, \dot{p}_{l}(t)=-\frac{\partial H}{\partial x_{l}}
$$

- Conserving quantities: α_{k} (time independent) to replace momentum variables, $p_{l}=\frac{\partial S\left(q_{k}, \alpha_{k}\right)}{\partial q_{l}}$
- Hamilton-Jacobi equations for $S\left(q_{k}, \alpha_{k} ; t\right)$:

$$
H\left(\frac{\partial S}{\partial q_{k}}, q_{k} ; t\right)+\frac{\partial S}{\partial t}=0
$$

Least action (Hamilton) principle - generating functional

- Functional of action on the space of trajectories parametrized by time:

$$
\mathscr{A}=\int d t\left[\sum_{k} p_{k}(t) \dot{q}_{k}(t)-H\left(p_{k}(t), q_{k}(t)\right)\right]=\int d t \mathscr{L}\left(q_{k}(t), \dot{q}_{k}(t)\right)
$$

where $\mathscr{L}\left(q_{k}, \dot{q}_{k}\right)$ is the Lagrangian

- Hamilton (least action) principle

$$
\delta \mathscr{A}=\int d t \sum_{k}\left[\left(\dot{q}_{k}-\frac{\partial H}{\partial p_{k}}\right) \delta p_{k}-\left(\dot{p}_{k}+\frac{\partial H}{\partial q_{k}}\right) \delta q_{k}\right]=0
$$

- Two ways to determine the dynamics of complicated system with many variables
\star Solving the set of Hamilton local differential equations for $q_{k}(t)$ and $p_{k}(t)$
\star Minimizing the global functional of action $\mathscr{A}\left(p_{k}, q_{k}\right)$ in the space of admissible trajectories
The two approaches may differ in approximate solutions

Quantum mechanics

Spatial scaling breaks down at microscopic lengths - discretization

Uncertainty principle - particle-wave dualism

- To solve the Hamilton equations - precise values for coordinates and velocities (momenta) needed
- Heisenberg uncertainty principle: $\Delta q \times \Delta p \geq \frac{\hbar}{2}$
- Localized elementary object (particle) $\Delta q=0$
- Delocalized elementary object (wave) $\Delta p=0$
- Particle description - using measurable quantities

Localized objects do not have deterministic evolution

- Wave description - allows for a deterministic evolution

Delocalized waves do not have direct interpretation

Schrödinger equation and Feynman path integral

- Wave function $\psi(\vec{x}, t)$ obeys local Schrödinger differential equation

$$
i \hbar \frac{\partial}{\partial t} \psi(\vec{x}, t)=-\left[\frac{\hbar^{2}}{2 m} \nabla^{2}-V(\vec{x})\right] \psi(\vec{x}, t)
$$

- Coordinates and momenta represented by operators: canonical commutation relations

$$
[\hat{x}, \hat{p}]=i \hbar \Rightarrow \hat{p}=-i \hbar \frac{d}{d x}
$$

- Action \& amplitude for particle trajectories: $K(q, \dot{q}, t)=e^{\frac{i}{\hbar} \int^{t} d t \mathscr{L}(q(t), \dot{q}(t))}$; each trajectory equally probable
- Quantum interference - amplitude for a transition of a particle between two measurements

$$
K\left(x_{0}, t_{0} ; x_{N}, t_{N}\right)=\int_{-\infty}^{\infty} d x_{1} \ldots \int_{-\infty}^{\infty} d x_{N-1} \exp \left\{\frac{i}{\hbar} \sum_{i=1}^{N} \mathscr{L}\left(x_{i}, \frac{x_{i}-x_{i-1}}{\Delta t}\right) \Delta t\right\}, \Delta t=\frac{t_{N}-t_{0}}{N}, N \rightarrow \infty
$$

- Probability of particle transitions: $P\left(x_{0}, t_{0} ; x_{N}, t_{N}\right)=\left|K\left(x_{0}, t_{0} ; x_{N}, t_{N}\right)\right|^{2}$
- Classical trajectory (most probable) in $\hbar \rightarrow 0$ leading to $\delta \mathscr{A}=0$ (Hamilton-Jacobi)

Many interacting quantum particles

Indistinguishability of identical particles

Second quantization

- Quantum particles are independent $\left(\mathscr{H}_{2}=\mathscr{H}_{1} \otimes \mathscr{H}_{1}\right)$ objects but indistinguishable:

$$
\left|\psi_{1}, \psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle \pm\left|\psi_{2}\right\rangle\left|\psi_{1}\right\rangle\right]
$$

- Completeness of the energy spectrum of 1 P Hamiltonian: $\hat{1}=\sum_{l}\left|\phi_{l}><\phi_{l}\right|$
- Ordering of energy eigenenergies bounded from below: $0=E_{0}<E_{1}<E_{2}<\ldots$
- Occupation number representation: $\mid \phi_{i}>$ occupied by n_{i} particles: $\mid N ; n_{1}, \ldots, n_{l}, \ldots>, N=\sum_{i} n_{i}$
- Second quantization: transformation $\mathscr{H}_{1} \rightarrow \mathscr{H}_{\text {Fock }}=\sum_{n=0}^{\infty} \oplus S_{ \pm} \mathscr{H}_{1}^{n}, \mathscr{H}_{0}$ - Fock vacuum (cyclic vector with E_{0})
- Wave vectors to operators: $|\psi\rangle=\sum_{l} c_{l}\left|\Phi_{l}\right\rangle \rightarrow \sum_{l} c_{l} \hat{a}_{l}^{\dagger}$ and $\langle\psi|=\sum_{l} c_{l}^{*}<\Phi_{l} \mid \rightarrow \sum_{l} c_{l}^{*} \hat{a}_{l}$
- Canonical commutation relations: $\left[\hat{a}_{l}, \hat{a}_{k}^{\dagger}\right]_{ \pm}=\hat{a}_{l} \hat{a}_{k}^{\dagger} \pm \hat{a}_{k}^{\dagger} \hat{a}_{l}=\delta_{l, k} \hat{1}$

Many-body Hamiltonian \& operator Schödinger equation

- Interacting fermions

$$
\hat{H}^{e l-e l}=\mathscr{V} \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \frac{\vec{p}^{2}}{2 m} \hat{a}_{\vec{p}}^{\dagger} a_{\vec{p}}+\frac{\mathscr{V}}{2} \int \frac{d^{3} q}{(2 \pi \hbar)^{3}} u(\vec{q}): \hat{\rho}(\vec{q}) \rho(-\vec{q}):
$$

The operator of particle density $\hat{\rho}(\vec{q})=\int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \hat{a}_{\vec{p}+q}^{\dagger} \hat{a}_{\vec{p}}$ and interaction strength $u(\vec{q})=\int d^{3} r e^{\frac{i}{\hbar} \vec{q} \cdot \vec{r}} U(r)$

- Thermodynamic (grand) potential $\Omega(T, V, \mu)=-k_{B} T \log \left[\operatorname{Tr}_{\text {Fock }} \exp \left\{-\beta\left(\hat{H}^{e l-e l}-\mu \hat{N}\right)\right\}\right]$
- Grand potential can be understood as an evolution functional in imaginary time $\beta \rightarrow \frac{i}{\hbar} t$
- Schrödinger equation for wave operator: $\quad-\hbar \frac{\partial}{\partial \tau} \hat{\psi}(\tau)=\left[\hat{H}_{0}+\hat{H}_{I}\right] \hat{\psi}(\tau)$
- Eigenvectors are known only for \hat{H}_{0}, but not for the full Hamiltonian $\hat{H}_{0}+\hat{H}_{I}$
- Interaction-induced quantum fluctuations due to non-commutativity $\left[\hat{H}_{0}, \hat{H}_{I}\right] \neq 0$

Many-body Green functions

- Elementary objects of quantum many-body here are creation and annihilation operators $\hat{a}_{\lambda}^{\dagger}$ and \hat{a}_{λ}
- These operators are not hermitian, hence non-measurable
- Imaginary-time evolution (Heisenberg): $\hat{a}_{\lambda}(\tau)=e^{\tau \hat{H}} \hat{a}_{\lambda} e^{-\tau \hat{H}}, \tau \in(0, \beta)$
- Quantum amplitudes for transitions between two "asymptotic" states $\lambda, \lambda^{\prime}$
- Thermal average of time-ordered product - 1P Green function

$$
\mathscr{G}\left(\lambda, \lambda^{\prime} ; \tau-\tau^{\prime}\right)=-\frac{1}{\mathscr{Z}} \operatorname{Tr}\left\{T_{\tau}\left[\hat{a}_{\lambda}(\tau) \hat{a}_{\lambda^{\prime}}^{\dagger}\left(\tau^{\prime}\right)\right] e^{-\beta\left(\hat{H}_{0}+\hat{H}_{l}-\mu \hat{N}\right)}\right\}
$$

with partition sum $\mathscr{Z}=\operatorname{Tr}\left[e^{-\beta\left(\hat{H}_{0}+\hat{H}_{I}-\mu \hat{N}\right)}\right]$

- 2P Green function: $\mathscr{G}\left(\lambda_{1}, \tau_{1} \lambda_{2}, \tau_{2}, \lambda_{3}, \tau_{3}, \lambda_{4}, \tau_{4}\right)=\frac{1}{\mathscr{Z}} \operatorname{Tr}\left\{T_{\tau}\left[\hat{a}_{\lambda_{1}}\left(\tau_{1}\right) \hat{a}_{\lambda_{3}}\left(\tau_{3}\right) \hat{a}_{\lambda_{4}}^{\dagger}\left(\tau_{4}\right) \hat{a}_{\lambda_{2}}^{\dagger}\left(\tau_{2}\right)\right] e^{-\beta\left(\hat{H}_{0}+\hat{H}_{I}-\mu \hat{N}\right)}\right\}$

Schwinger approach - equation based

Equations for Green functions

- Schwinger equation matches $1 P$ \& $2 P$ Green functions

$$
G(1, \overline{1})=G^{(0)}(1, \overline{1})+\int d \overline{2} d 2 G^{(0)}(1, \overline{2}) U(\overline{2}-2) G_{(2)}(\overline{1} \overline{2}, 22)
$$

- Dyson equation - 1P self-energy Σ replaces 2P GF in Schwinger equation

$$
G(1, \overline{1})=G^{(0)}(1-\overline{1})+\int d 3 d \overline{3} G^{(0)}(1-\overline{3}) \Sigma(\overline{3}, 3) G(3, \overline{1})
$$

- 2 P Dyson equation - 2 P vertex

$$
G_{(2)}(1 \overline{1}, 3 \overline{3})=G(1, \overline{1}) G(3, \overline{3})+\int d 1^{\prime} d \overline{1}^{\prime} d 3^{\prime} d \overline{3}^{\prime} G\left(1, \overline{1}^{\prime}\right) G\left(1^{\prime} \overline{1}\right) \Gamma\left(1^{\prime} \overline{1}^{\prime}, 3^{\prime} \overline{3}\right) G\left(3, \overline{3}^{\prime}\right) G\left(3^{\prime} \overline{3}\right)
$$

- Schwinger-Dyson equation

$$
\begin{aligned}
& \Sigma(\overline{1}-1)=\int d 2 U(1-2) G\left(2,2^{+}\right) \delta(1-\overline{1})-U(1-\overline{1}) G(\overline{1}-1) \\
& -\int d 2 d \overline{4} d 4 d 3 U(1-2) G(4-1) G(2-\overline{4}) G(3-2) \Gamma(4, \overline{4}, 3, \overline{1}) \\
& +-
\end{aligned}
$$

Ward identity \& Schwinger field theory

- Bethe-Salpeter equations - 2 P irreducible vertex Λ ($2 P$ self-energy)

$$
\Gamma(1, \overline{2}, 2, \overline{1})=\Lambda(1, \overline{2}, 2, \overline{1})+\int d \overline{3} d 3 d \overline{4} d 4 \Lambda(1, \overline{2}, 3, \overline{3}) G(3-\overline{4}) G(4-\overline{3}) \Gamma(4, \overline{4}, 2, \overline{1})
$$

where $1=(\vec{p}, \tau, \sigma)$ are particle degrees of freedom when annihilated and $\overline{1}$ when created

- Generalized Ward identity connecting 1P \& 2P irreducible vertices (conserving theory)

$$
\Lambda(\overline{1}, 2, \overline{3}, 3)=\frac{\delta \Sigma(\overline{3}, 3)}{\delta G(2, \overline{1})}
$$

- Putting all exact equations together \rightarrow Schwinger field theory

$$
\Sigma=U G-U G G \star\left[1+\frac{\delta \Sigma}{\delta G} G G \star\right]^{-1} \frac{\delta \Sigma}{\delta G}
$$

Closed formulation - no perturbative (diagrammatic) input \& Wick's contractions

- A solution only perturbative via expansion in interaction U

Feynman approach - functional based

Dirac picture - full perturbative solution

- Eigenstates and eigenenergies of \hat{H}_{0} are known
- Evolution of operators (Dirac) interactive picture: $\hat{A}(\tau)=e^{\tau \hat{H}_{0}} \hat{A} e^{\tau \tau \hat{H}_{0}}$
- Thermodynamic S-matrix: $\quad \hat{S}_{\mu}(\beta, 0)=T_{\tau} \exp \left\{-\int_{0}^{\beta} d \tau \hat{H}_{I}(\tau)\right\}$, only perturbative definition
- Thermal averaging $\langle\hat{X}\rangle=\frac{1}{\mathscr{L}_{0}} \operatorname{Tr}\left[\hat{X} e^{\left.-\beta\left(\hat{H}_{0}\right)-\mu \hat{N}\right)}\right]$
- 1P Green function (diagonal in momentum representation)

$$
\mathscr{G}\left(\vec{p}, \tau-\tau^{\prime}\right)=-\frac{1}{\left\langle\hat{S}_{\mu}(\beta, 0)\right\rangle}\left\langle T_{\tau}\left[\hat{a}_{\vec{p}}(\tau) \hat{a}_{\vec{p}}^{\dagger}\left(\tau^{\prime}\right) \hat{S}_{\mu}(\beta, 0)\right]\right\rangle
$$

- Unperturbed Green function $\left(\hat{H}_{I}=0\right)$

$$
\mathscr{G}_{0}\left(\vec{p}, \tau-\tau^{\prime}\right)=-\left\langle T_{\tau}\left[\hat{a}_{\vec{p}}(\tau) \hat{a}_{\vec{p}}^{\dagger}\left(\tau^{\prime}\right)\right]\right\rangle
$$

Perturbation expansion - Feynman diagrams

- Solution is perturbative due to time-ordering product defined only on polynomials
- Thermodynamic S-matrix

$$
\hat{S}_{\mu}(\beta, 0)=1+\sum_{n=1}^{\infty}(-1)^{n} \int_{0}^{\beta} d t_{1} \int_{0}^{t_{1}} d t_{2} \ldots \int_{0}^{t_{n-1}} d t_{n}\left\langle\hat{H}_{I}\left(t_{1}\right) \hat{H}_{I}\left(t_{2}\right) \ldots \hat{H}_{I}\left(t_{n}\right)\right\rangle
$$

- Expressions $\left\langle\hat{a}_{i_{1}}^{\dagger} \ldots \hat{a}_{i_{n}}^{\dagger} \hat{a}_{i_{n}} \ldots \hat{a}_{i_{+}}\right\rangle$are explicitly known and $\left[\hat{a}_{\alpha}^{\dagger},\left[\hat{a}_{\beta}, \hat{H}_{0}\right]\right]=c_{\alpha \beta} \hat{1}$
- Perturbation expansion is a sum of products of Wick's contractions $\left\langle T_{\tau}\left[\hat{a}_{\vec{p}}(\tau) \hat{a}_{\vec{p}}^{\dagger}\left(\tau^{\prime}\right)\right]\right\rangle$ (bare Green functions)
- Feynman diagrams - graphical representation of unlabelled Wick's contractions

$1 \longleftarrow \overline{1}$

Thermodynamic potential - Luttinger-Ward functional

- Solution of Schwinger theory: $\Sigma[U, G]$: How to get the thermodynamic potential?
- Luttinger-Ward functional Φ such that $\Sigma[U, G]=\frac{\delta \Phi[U, G]}{\delta G}$
- Generating thermodynamic functional (analogue to Hamilton classical action $q \rightarrow G$ and $p \rightarrow \Sigma$)

$$
\frac{1}{N} \bar{\Omega}[G, \Sigma]=-\frac{1}{\beta N} \sum_{\sigma, \omega_{n} \mathbf{k}} e^{i \omega_{n} 0^{+}}\left\{\ln \left[i \omega_{n}+\mu_{\sigma}-\epsilon(\mathbf{k})-\Sigma_{\sigma}\left(\mathbf{k}, i \omega_{n}\right)\right]+G_{\sigma}\left(\mathbf{k}, i \omega_{n}\right) \Sigma_{\sigma}\left(\mathbf{k}, i \omega_{n}\right)\right\}+\Phi[G, U]
$$

- Equilibrium state from $\quad \delta \bar{\Omega}=\frac{\delta \bar{\Omega}}{\delta \Sigma} \delta \Sigma+\frac{\delta \bar{\Omega}}{\delta G} \delta G=\left[\left(G^{(0)-1}-\Sigma\right)^{-1}-G\right] \delta \Sigma-\left[\Sigma-\frac{\delta \Phi}{\delta G}\right] \delta G=0$
- Feynman field theory - Feynman diagrams determine the thermodynamic potential (Hamilton-Jacobi-like)

$$
\Omega\left[G^{(0)-1}, U\right]=-k_{B} T \ln \left[\mathscr{E}_{0}\left\langle\hat{S}_{\mu}(\beta, 0)\right\rangle\right]=N \Phi[G, U]-\operatorname{Tr}\left[\ln \left(G^{(0)-1}-\frac{\delta \Phi}{\delta G}\right)+G \frac{\delta \Phi}{\delta G}\right]
$$

Input to the Feynman approach is a renormalized perturbation theory

Response functions \& conserving approximations

- Φ-derivable approximations - analytic form of $\Phi[G, U]$ for given $\Sigma[G, U]$ (not always possible)
- Thermodynamic potential does not contain 2P functions - conserving form not guaranteed
- Schwinger-Dyson equation representing the self-energy $\Sigma[G, U]$ via 2 PI vertex $\Lambda[G, U]$

$$
\Sigma[G, U]=U G\left[1-G(1+\Lambda[G, U] G G \star)^{-1} \Lambda[G, U]\right]
$$

- Conserving approximations $\Lambda[G, U]=\frac{\delta \Sigma}{\delta G}$ results in Schwinger theory (unreachable)
- Conserving response function $\chi=\frac{d G}{d h}=\left[1+\frac{\delta \Sigma[G, U]}{\delta G} G G \star\right]^{-1} G G$
- Inconsistency in determining critical behavior (diverging response function)

$$
1+\Lambda[G, U] G G \neq 1+\frac{\delta \Sigma[G, U]}{\delta G} G G
$$

Conclusions - Thermodynamics of correlated electrons

- Perturbation theory needed - Feynman diagrams representing virtual physical processes
- Non-perturbative approximations - infinite series of diagrams
- Approximation generators - Schwinger-Dyson equation determining the self-energy from 2PIR vertex
- Conserving approximations - only fully renormalized Green functions in Feynman diagrams
- Luttinger-Ward functional (thermodynamic potential) connects thermal \& mechanical parts
- Conserving 2P vertex - via Ward identity from self-energy
- Thermodynamic consistency - only a single divergent 2P vertex; the task to solve

Matching the vertex from Schwinger-Dyson equation with the conserving one from Ward identity

